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ABSTRACT 

An example of a Markov transtion operator acting on C(X) is constructed 
in which the restriction of the operator to the conservative part of X is not 
a conservative operator. 

Let C(X) denote, as usual, the B-space of continuous real-valued functions on 

the compact Hausdorff space X. A (stable) Markov operator on C(X) is a non- 

negative linear operator T with T1 = 1. In his development of a topological 

analogue of the Hopf  ergodic decomposition for such an operator, Foguel [1] 

defines the following. 

Let A = {f: 0 < f < 1, f is 1.s.c., Tf  < f, and T"f  ~ 0 (pointwise)}. Let D(f) 

= (x: f(x) > 0} and then define the dissipative set as D = n ( D ( f ) : f  ~ A}. The 

conservative set, C = X /D, is then closed and invariant. 

Since C is closed and invariant, the process may be restricted to the set C to 

obtain a new (stable) Markov operator acting on C. Foguel defines a conservative 

Markov operator to be one for which D is empty, thus avoiding the open question 

of whether T restricted to C is conservative. Conditions in terms of catagory have 

been given by Lin [2] for this to be the case. 

First we let I be the unit interval [0, 1] and consider the point transformation 

~b: x ~ 2x (mod 1). The Markov operator which is generated by 4~ is not stable on 

C(I), of course. But now we look  at the orbit of the point p = 0.1010010001 ... 

(dyadic) under the action of the iterates &.  The discontinuity of q5 at w = 0.1000... 

is only approached from above by the iterates. Thus ~b acts continuously on C(S) 

where S is the closure of the set of iterates of p. It is easily seen that S is countable 
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and the only limit points of the set of iterates are the points of the form Wn = 2 -n 

and the origin. 

Now we take the unit square Z = I x / and define the point transformation 

0: (1/2x, y) ~ (x, ~b(y)) where ~b is the map discussed above. Let w = (1, p) where 

p e / i s  the point discussed above. Let X be the closure of the orbit of w under the 

action of 0. As before, 0 is continuous on X as the segment ([x, 1/2] : x ~/}, which 

is the discontinuity set of 0, is only approached from above by the iterates of w. 

The limit points of the iterates are countable set (0, 2 -n) and (0, 0). Thus 0 generates 

a Markov operator which acts on C(X). 

We wish to compute the conservative set for (X, 0). Note that for F(x, y) = x, 

we have F ~ A so that the conservative part is contained in {(0, y) : y ~/} ~ X. 

But now consider any function, 0 __<f__< 1, which is lower-semicontinuous on X. 

If some point u of {(0, y) : y ~/} n X is in the open set I f  > 0[, then it is in the 

open set [-f> 1/2f(u)] as well. Now u is a cluster point of Onw so T~f(w) > 1/2f(u) > 0 

for infinitely many n. Thus T~f~, 0 is not possible, so f is not in A. Thus the con- 

servative part of (X,0) is the set Y = {(0, y) : y ~/} n X. 

Finally, we consider the Markov operator induced by restriction to Y. Let G(x, y) 

= 1 - H(x,y),  where H(x, y) is the indicator function of the point (0, 0). Then 

B is seen to satisfy T~G,~ 0, where T denotes here the restricted operator. Thus 

the conservative part of (Y, 0) is singleton point (0, 0). Therefore the conservative 

part of (X, 0) is not conservative. 
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