AN EXAMPLE IN THE THEORY OF STABLE MARKOV OPERATORS

BY

R. C. SINE

ABSTRACT

An example of a Markov transition operator acting on C(X) is constructed in which the restriction of the operator to the conservative part of X is not a conservative operator.

Let C(X) denote, as usual, the *B*-space of continuous real-valued functions on the compact Hausdorff space X. A (stable) Markov operator on C(X) is a nonnegative linear operator T with T1 = 1. In his development of a topological analogue of the Hopf ergodic decomposition for such an operator, Foguel [1] defines the following.

Let $A = \{f: 0 \le f \le 1, f \text{ is l.s.c.}, Tf \le f, \text{ and } T^nf \downarrow 0 \text{ (pointwise)}\}$. Let $D(f) = \{x: f(x) > 0\}$ and then define the dissipative set as $D = \bigcap \{D(f): f \in A\}$. The conservative set, $C = X \setminus D$, is then closed and invariant.

Since C is closed and invariant, the process may be restricted to the set C to obtain a new (stable) Markov operator acting on C. Foguel defines a conservative Markov operator to be one for which D is empty, thus avoiding the open question of whether T restricted to C is conservative. Conditions in terms of catagory have been given by Lin [2] for this to be the case.

First we let I be the unit interval [0, 1] and consider the point transformation $\phi: x \to 2x \pmod{1}$. The Markov operator which is generated by ϕ is not stable on C(I), of course. But now we look at the orbit of the point $p = 0.1010010001 \cdots$ (dyadic) under the action of the iterates ϕ^n . The discontinuity of ϕ at $w = 0.1000\cdots$ is only approached from above by the iterates. Thus ϕ acts continuously on C(S) where S is the closure of the set of iterates of p. It is easily seen that S is countable

Received September 1, 1972

and the only limit points of the set of iterates are the points of the form $W_n = 2^{-n}$ and the origin.

Now we take the unit square $Z = I \times I$ and define the point transformation $\theta: (1/2x, y) \to (x, \phi(y))$ where ϕ is the map discussed above. Let w = (1, p) where $p \in I$ is the point discussed above. Let X be the closure of the orbit of w under the action of θ . As before, θ is continuous on X as the segment $\{[x, 1/2] : x \in I\}$, which is the discontinuity set of θ , is only approached from above by the iterates of w. The limit points of the iterates are countable set $(0, 2^{-n})$ and (0, 0). Thus θ generates a Markov operator which acts on C(X).

We wish to compute the conservative set for (X, θ) . Note that for F(x, y) = x, we have $F \in A$ so that the conservative part is contained in $\{(0, y) : y \in I\} \cap X$. But now consider any function, $0 \le f \le 1$, which is lower-semicontinuous on X. If some point u of $\{(0, y) : y \in I\} \cap X$ is in the open set [f > 0], then it is in the open set [f > 1/2f(u)] as well. Now u is a cluster point of $\theta^n w$ so $T^n f(w) > 1/2f(u) > 0$ for infinitely many n. Thus $T^n f \downarrow 0$ is not possible, so f is not in A. Thus the conservative part of (\mathbf{X}, θ) is the set $Y = \{(0, y) : y \in I\} \cap X$.

Finally, we consider the Markov operator induced by restriction to Y. Let G(x, y) = 1 - H(x,y), where H(x, y) is the indicator function of the point (0,0). Then B is seen to satisfy $T^nG \downarrow 0$, where T denotes here the restricted operator. Thus the conservative part of (Y, θ) is singleton point (0,0). Therefore the conservative part of (X, θ) is not conservative.

REFERENCES

1. S. R. Foguel, Ergodic decompositions of a topological space, Israel J. Math. 7 (1969), 164-167.

2. M. Lin, Conservative Markov processes on a topological space, Israel J. Math. 8 (1970), 165-186.

THE UNIVERSITY OF RHODE ISLAND KINGSTON, RHODE ISLAND, U.S.A.